» » Усовершенствован синтез катализаторов для «обезвреживания» угарного газа

Усовершенствован синтез катализаторов для «обезвреживания» угарного газа

Усовершенствован синтез катализаторов для «обезвреживания» угарного газа

Ученые НИТУ «МИСиС» в сотрудничестве с коллегами из Швеции и Беларуси разработали метод простого одностадийного синтеза катализаторов для окисления угарного газа CO, крайне токсичного вещества, являющегося побочным продуктом горения топлива и ряда промышленных процесов. Катализаторы представляют собой графен-металлические композиты, активно реагирующие с окружающей атмосферой, и в кратчайшие сроки «обезвреживающие» CO. Результаты работы были опубликованы в журналах Inorganic Chemistry и Nature Scientific Reports.

Чистый графен и его аналоги являются одними из лучших катализаторов для активации большого числа лабораторных и промышленных процессов. Повышение каталитической активности графеновых материалов может быть достигнуто за счет их модификации – введения в структуру или на поверхность наноразмерных зерен каталитически активных металлов, таких как медь и никель.

Такого рода катализаторы можно использовать, например, для окисления CO (более известен как «угарный газ», образуется при неполном окислении углеродсодержащего компонентов или топлива во многих промышленных и бытовых процессах – легировании стали, сжигании топлива и бытового газа).

При этом, как правило, синтез подобных композиций довольно сложен, требует длительного времени, использования дорогостоящего оборудования, сложных технологических операций. Эти факторы делают синтез графен-металлических нанокомпозитов довольно дорогим и трудоемким процессом. При этом угарный газ либо выбрасывается, либо доокисляется при высоких температурах с использованием других известных катализаторов.

Ученые НИТУ «МИСиС», Королевского Технологического Университета (KTH) Швеции и института Общей и неорганической химии НАН Беларуси разработали новый простой одностадийный метод получения графен-металлических нанокомпозиций. В основу подхода лег метод горения в растворах (solution combustion synthesis, SCS).

Главной особенностью метода является подбор исходных компонентов так, чтобы при их нагреве до определенной критической температуры начиналась экзотермическая реакция горения – реакция с выделением большого количества тепла, позволяющая очень быстро разогреть смесь компонентов.

Такой метод синтеза может быть осуществлен в считанные минуты. При этом за счет правильного подбора компонентов и их однородного смешение в растворе можно получать очень широкий спектр наноматериалов с необычными структурой поверхности и интересными свойствами.

«Мы имеем в распоряжении очень мощный инструмент для создания наноматериалов с широким набором характеристик. Адаптивность и универсальность метода синтеза, который мы используем, позволяет нам точечно регулировать параметры процесса для получения наноструктур, наиболее подходящих для конкретной области их применения. В данном случае мы научились синтезировать композитные 2D структуры на основе графена. Однако, мы полагаем, данный метод может быть также использован для получения и других 2D материалов», – комментирует один из авторов работы, к.т.н., ведущий эксперт НИЦ «Конструкционные Керамические Наноматериалы» НИТУ МИСиС и исследователь на кафедре «Коррозии и поверхностных явлений» Королевского Технологического Университета (Швеция) Александр Хорт.

Авторы исследования установили, что полученные ими графен-металлические нанокомпозиты по сути являются тонкой графеновой матрицей, в которой равномерно распределены наноразмерные зерна металлов. Такое сочетание приводит к тому, что нанокомпозит в целом обладает очень высокой удельной поверхностью, доступной для взаимодействия с окружающей атмосферой.

При этом каталитические активные зерна металла могут свободно принимать и передавать электрический заряд, ускоряя и усиливая процесс катализа. Это приводит к тому, что полное окисление CO достигается уже при 150 °С (против 180-200 °С у аналогов).

Результаты исследования могут быть использованы для создания эффективных катализаторов процессов химической и металлургической промышленности, что может сделать производство более экологичным. Кроме того, дальнейшее исследование возможностей метода синтеза является потенциальным ключом для создания ряда иных, помимо графена, 2D-наноматериалов.

14 ноябрь 2020 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Химики СПбГУ обнаружили возможности для более «зеленого» использования карбида кальция

Химики Санкт-Петербургского государственного университета разработали новую стратегию использования карбида кальция в синтезе органических соединений

Ученые из РФ и США разработали методику превращения графена в наноалмазные пленки

Ученые НИТУ «МИСиС» и американские материаловеды разработали методику, позволяющую пр

Российские учёные создали технологию получения высокопрочного материала

Российские учёные предложили способ уменьшения веса конструкций в автомобилях, самолё

Ученые улучшили катализаторы для разложения вредного газа

Ученые НИТУ «МИСиС» нашли способ ускорить разложение закиси азота – побочного продукт

Ученые НИТУ «МИСиС» усовершенствовали формулу расчета жесткости наноматериалов

Ученые НИТУ «МИСиС» предложили способ однозначного определения механической жесткости наноструктур. 
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Иммерсивная выставка Клода Моне – полное погружение в мир великого импрессионистаВ 2023 году NASA запустит в космос новый луноход VIPER. Чем он займется?Ядерная ракета Vasimr доставит людей на Марс за один месяц. Опасна ли она?Фрэнк Вулворт, создатель ценников и супермаркетовРазработан самый маленький летательный аппарат. Для чего он нужен?Японское кафе прославилось на весь мир туалетом в аквариуме«Капли дождя» Самуэля Сальседо в парке города ЭтретаЭта картина Ренуара наделала в своё время много шума... причем трижды!