» » Нейтрино способно толкать ядра атомов

Нейтрино способно толкать ядра атомов

Физики доказали существование нового взаимодействия нейтрино с веществом.

Исследователи из большой международной команды, участвующей в эксперименте COHERENT в Ок-Риджской национальной лаборатории (США), обнаружили, что нейтрино низкой энергии участвуют в слабом взаимодействии с ядрами аргона. Этот процесс получил название когерентное упругое нейтринно-ядерное рассеяние (CEvNS). Нейтрино подобно теннисному шарику, налетающему на шар для боулинга, "ударяется" о большое и тяжёлое ядро атома и передаёт ему крошечное количество энергии. В результате ядро почти незаметно отскакивает.

Нейтрино способно толкать ядра атомов
Детектор CENNS-10, на основе жидкого аргона (фото Rex Tayloe, Индианский Университет)
Нейтрино способно толкать ядра атомов
Вид с воздуха на Ок-Риджскую национальную лабораторию (фото Jason Richards/ORNL, U.S. Dept. of Energy) ‹ › Открыть в полном размере

Стандартная модель физики элементарных частиц предсказывает упругое рассеяние нейтрино на ядрах, но долгое время его обнаружить не удавалось. Основой открытия, сделанного с ядром аргона, стало исследование 2017 года, опубликованное в журнале Science, в котором сотрудники COHERENT предоставили первое свидетельство возможности подобного процесса. Но там нейтрино взаимодействовало с более крупными и тяжёлыми ядрами цезия и йода. Их отдача была меньше, чем у ядер аргона, что не позволило тогда окончательно решить вопрос.

Наблюдение взаимодействия нейтрино с аргоном, самым лёгким ядром, для которого оно было измерено, подтверждает ранее сделанные наблюдения на более тяжёлых ядрах. И доказывает существование этого типа взаимодействия. Полученные результаты согласуются со Стандартной моделью. В частности в этой работе использованы данные, собранные за 18 месяцев. Их анализ выявил 159 событий CEvNS, что соответствует прогнозу Стандартной модели.

Поскольку нейтрино электрически нейтральны и очень слабо взаимодействуют с веществом, для наблюдения этого взаимодействия потребовалось развить детекторные технологии. Разработкой более чувствительных фотодетекторов руководил Юрий Ефременко, физик из Университета Теннесси и Ок-Риджской лаборатории, сотрудничающий также с МИФИ. Исследователи надеются, что повышенная точность, обеспечиваемая новыми, более крупными детекторами, позволит им увидеть что-то новое, выйти за пределы Стандартной модели, обнаружить признаки так называемой новой физики, включая существование стерильных нейтрино, которые не участвуют в слабом взаимодействии.

Команда COHERENT использует самый яркий в мире импульсный ускорительный источник нейтронов SNS. Нейтроны, которые SNS производит для исследований, возникают в результате взаимодействия пучка протонов высокой энергии с ртутной мишенью. Нейтрино рождаются в этом процессе как побочный продукт. Для работы с ними была создана специальная нейтринная лаборатория, получившая название Neutrino Alley. Детектор массой 24 кг под названием CENNS-10 находится на расстоянии 27,5 метров от источника нейтрино. Он экранирован слоями свинца, меди и воды для устранения нейтронного фона.

Детекторы большого размера позволяют лучше выполнять высокоточные измерения, а детекторную технологию CENNS-10 легко масштабировать, просто добавляя больше жидкого аргона. В будущем исследователи планируют увеличить детектор до одной тонны, чтобы видеть в 25 раз больше событий ежегодно, а потом добавить ещё один десятитонный детектор на жидком аргоне. Кроме того, для комплексных исследований нейтрино необходимы детекторы разных типов. В следующем году в лаборатории будет установлен шестнадцатикилограммовый детектор на основе ядер германия, которые больше аргона, но меньше цезия и йода.

Сбор данных продолжается в режиме 24/7, несмотря на COVID-19, благодаря тому, что сотрудники COHERENT удалённо контролируют работу детектора.

Считается, что нейтрино лежит в основе многих нерешённых вопросов о природе Вселенной, так что новое открытие внесёт свой вклад в объяснение загадок космоса. Новое взаимодействие – способ измерить распределение нейтронов как внутри ядер, так и внутри нейтронных звезд, поскольку процессы там очень похожи.

В коллаборации COHERENT принимают участие 80 человек из 19 учреждений четырёх стран, в том числе и из России. Нашу страну представляют ИТЭФ имени А.И. Алиханова (НЦ «Курчатовский институт»), Университет МИФИ и МФТИ.

Результаты исследования опубликованы в журнале Physical Review Letters

По материалу Ок-Риджской национальной лаборатории (ORNL)
01 февраль 2021 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Экспериментаторы заглянули в ядро Солнца

Эксперимент Борексино получил первое экспериментальное доказательство протекания на солнце термоядерных реакций так называемого CNO-цикла.

Неизвестная частица обнаружена в ЦЕРН

Один из детекторов Большого адронного коллайдера обнаружил новую частицу, состоящую из четырех очарованных кварков. Физики полагают, что это первый представитель неописанного класса частиц.

Гибрид свиньи с обезьяной, фото черной дыры и другие главные открытия 2019 года

Сильнее всего выделились физики и астрономы, которые порадовали обнаружением новых космических явлений, и фотографиями того, чего раньше никто еще не видел

Может ли новая частица изменить судьбу Вселенной?

Все знают, что Вселенная постоянно расширяется, однако никто не знает, как быстро она это делает. С тех пор, как наше мироздание возникло в результате взрыва крошечного пятнышка, которое буквально за

Нейтринный телескоп «Супер-Камиоканде»

В это трудно поверить, но на этом изображении — Солнце...

Обнародованы первые результаты LHC Run 2

15 декабря в ЦЕРНе прошел традиционный предновогодний семинар, на котором была представлена первая порция серьезных результатов нового сеанса работы Большого адронного коллайдера. Две крупнейших
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Потрясающие картины Джастина Бейтмана из пляжной гальки и камнейУдивительные животные из воздушных шаров японского художника Масаеси МацумотоУченый Роберт Ланца объяснил, почему смерти не существует5 самых интересных фактов о водкеИстория эволюции электромобилейКак Репин Айвазовскому Пушкина нарисовать помогНевероятно реалистичная скульптура «Путешественник»Это самые быстрые серийные мотоциклы в мире