» » Усилилось расхождение данных LHCb с предсказаниями Стандартной модели

Усилилось расхождение данных LHCb с предсказаниями Стандартной модели


Усилилось расхождение данных LHCb с предсказаниями Стандартной модели

Усилилось расхождение данных LHCb с предсказаниями Стандартной модели

Рис. 1. Внутренности детектора LHCb. Изогнутый 1600-тонный магнит, обмотки которого видны на снимке, разделяет траектории заряженных частиц и позволяет реконструировать процессы распада мезонов. фото сделано в декабре 2018 года во время плановых работ. фото с сайта cds.cern.ch


 

Коллаборация LHCb, завершив обработку всей набранной к настоящему времени статистики, обнародовала долгожданные результаты по проверке лептонной универсальности в редких распадах B-мезонов. Лептонная универсальность — краеугольный камень Стандартной модели, поэтому обнаружившиеся несколько лет назад намеки на ее нарушение вызвали ажиотаж среди теоретиков. Новые результаты подтверждают расхождение; его статистическая значимость выросла до 3,1 стандартного отклонения.

Шесть-семь лет назад очень многие физики, изучавшие мир элементарных частиц, пребывали в ожидании грядущих фундаментальных открытий. По итогам первого сеанса работы Большого адронного коллайдера обнаружилось несколько очень любопытных отклонений от предсказаний Стандартной модели. Некоторые из них относились к энергиям выше 1 ТэВ, и теоретики видели в них намеки на новые тяжелые частицы, что сулило целый фейерверк открытий. Другие отклонения касались свойств открытого накануне бозона Хиггса, из-за чего многие физики начали всерьез подозревать, что хиггсовский механизм в нашем мире вовсе не так скучен, как постулировалось в Стандартной модели. И наконец, были никем не предсказанные отклонения в редких распадах B-мезонов — хорошо известных частиц, которые исследуются вдоль и поперек уже несколько десятилетий.

Вряд ли кто-то считал, что все эти отклонения — реальны; несомненно, некоторые из них вызваны статистическими флуктуациями в небольшой статистике событий. Но в обсуждениях и спорах теоретиков по поводу этих отклонений явно чувствовалось ожидание, что стоит немного поднажать, накопить еще в несколько раз больше данных, и будет открыта Новая физика за пределами Стандартной модели, будет достигнута главная цель Большого адронного коллайдера.

В 2015 году стартовал второй сеанс работы коллайдера, LHC Run 2. Энергия столкновений возросла, статистика увеличивалась рекордными темпами — и по мере обработки поступавших данных экспериментаторы безжалостно закрывали одно отклонение за другим. К началу 2018 года все намеки на что-либо нестандартное в свойствах бозона Хиггса и в области больших масс исчезли.

Однако отклонения в распадах B-мезонов оказались на удивление стойкими. По мере того, как экспериментальные группы — в особенности, коллаборация LHCb — обрабатывали все новые и новые данные и улучшали методику анализа, погрешности уменьшались, но отклонения от Стандартной модели держались. Причем эти отклонения касались трех типов измерений, которые сильно различались и в методах обработки, и в объеме статистики, и в погрешностях теоретических расчетов (см. подробности на странице Загадки коллайдера за 2018 год). Каждое из этих расхождений с предсказаниями Стандартной модели, взятое по отдельности, не выглядело железобетонным открытием; статистическая значимость отклонения находилась в пределах 2–4 стандартных отклонений. Но все эти намеки, столь разные по своим проявлениям, удивительным образом не противоречили друг другу, а, наоборот, напрашивались на единое объяснение: что-то неладное творится при распадах B-мезонов на мюоны. На конференциях 2018 года именно обсуждение этих аномалий в распадах B-мезонов стало самой горячей темой в физике частиц (см. новость Moriond 2018: аномалии в распадах B-мезонов остаются горячей темой, «Элементы», 15.03.2018).

Одной их этих загадок было необъяснимое нарушение лептонной универсальности в распадах B-мезонов на К-мезоны и лептонную пару — либо электрон-позитронную e+e–, либо мюон-антимюонную ?+?–. Это редкие распады, они происходят с вероятностью меньше одной миллионной. Такая малость возникает потому, что в рамках Стандартной модели не существует частицы, которая была бы способна напрямую превратить b-кварк внутри B-мезона в s-кварк внутри K-мезона. Этот процесс идет внутри мезона в несколько этапов и требует «помощи» тяжелых виртуальных частиц (рис. 2). Но раз вклад Стандартной модели так мал, то слабые эффекты гипотетической Новой физики, которые не удается заметить в других распадах, здесь могут стать существенными.


Усилилось расхождение данных LHCb с предсказаниями Стандартной модели

Рис. 2. Схематичное изображение распада B-мезона на К-мезон и мюон-антимюонную пару. Превращение b-кварка в s-кварк происходит сложным образом, и, возможно, в нем проявляют себя новые, неоткрытые пока частицы


Если бы вероятности каждого из этих распадов можно было теоретически предсказать с высокой точностью, то было бы достаточно сравнить измерения с расчетами. К сожалению, теоретические неопределенности в этих вероятностях слишком велики из-за того, что приходится обсчитывать превращение мезонов друг в друга; эта извечная беда адронной физики, и от нее никуда не деться. Однако отношение распадов — вероятность распада на K?+?– поделить на вероятность распада на Ke+e– — предсказывается довольно надежно: ведь в обоих распадах мезоны одинаковые, и плохо вычисляемые параметры сокращаются. Это отношение, которое обозначается через RK, в Стандартной модели практически равно единице.

Единица тут неслучайна. В рамках Стандартной модели постулируется свойство под названием лептонная универсальность. Это означает, что слабое взаимодействие действует одинаково (то есть, универсально) на лептоны любого сорта. Если какой-то эксперимент надежно покажет, что лептонная универсальность слабого взаимодействия нарушается, то отмахнуться от этого результата не получится — в Стандартной модели больше ничего нельзя менять, она полностью зафиксирована. Поэтому достоверное отличие RK от единицы станет долгожданным открытием Новой физики; открытием, пусть и непрямым, но достойным Нобелевской премии.

В 2014 году коллаборация LHCb после анализа данных сеанса Run 1 сообщила о том, что RK действительно заметно меньше единицы: его значение оказалось примерно равным 0,745 с погрешностью около 0,1. С одной стороны, различие существенное, почти на четверть. С другой стороны, погрешность велика: отклонение от единицы составило примерно 2,6 стандартных отклонений. В 2017 году было обнародовано аналогичное отклонение в распаде на возбужденный K*-мезон (На LHC обнаружен еще один намек на нарушение Стандартной модели, «Элементы», 20.04.2017). Это уже другой процесс, со своими тонкостями анализа, но и тут отношение (оно обозначается RK*) было меньше единицы.

Реальны ли эти отклонения или же перед нам очередная «шутка природы», когда статистическая флуктуация сбивает физиков с толку? Ответить на этот вопрос, разумеется, могут только новые, более точные экспериментальные результаты. В 2018 году завершился сеанс набора данных Run 2, однако коллаборация LHCb продолжала методично анализировать данные, многократно перепроверяя все возможные источники погрешностей.

В 2019 году LHCb выпустила новую статью, посвященную отношению RK (R. Aaij et al., 2019. Search for Lepton-Universality Violation in B+->K+l+l– Decays). Статистика подросла, погрешности уменьшились, однако и отклонение от единицы тоже уменьшилось — и в результате статистическая значимость отклонения от Стандартной модели даже чуть-чуть ослабла. Складывалось ощущение, что и эта загадка коллайдера скоро сойдет на нет.

И вот на днях, после нескольких лет кропотливой работы, коллаборация LHCb наконец-то предъявила анализ всей статистики сеанса Run 2, которая примерно вдвое превысила выборку, использованную в 2019 году. Значение RK оказалось равным примерно 0,846 ± 0,044, что отличается от единицы уже на 3,1 стандартных отклонения. На рис. 3 показано, как новое значение соотносится с предыдущими. Видно, что, по сравнению с результатом 2019 года, погрешность заметно уменьшилась, но центральное значение никуда не сдвинулось. Это очень обнадеживающий сигнал! За прошедшие годы экспериментаторы досконально изучили свою установку и методику анализа, знают все их слабые места и погрешности, умеют не только правильно их оценивать, но и компенсировать (в анализе использовалось не просто отношение, а двойное отношение, см. подробности в новости На LHC обнаружен еще один намек на нарушение Стандартной модели, «Элементы», 20.04.2017), а также способны надежно контролировать качество компенсации. Дабы не показалось, что экспериментаторы специально подгоняли данные под желаемый результат, стоит подчеркнуть, что вся методика анализа была отлажена и зафиксирована до того, как в анализ была добавлена новая порция данных.


Усилилось расхождение данных LHCb с предсказаниями Стандартной модели

Рис. 3. Результаты проверки лептонной универсальности через отношение RK по данным различных экспериментов: в детекторах BaBar и Belle на электрон-позитронных коллайдерах и в детекторе LHCb на все возрастающей статистике. Черная точка с погрешностями — значение 2021 года. Вертикальный пунктир — предсказание Стандартной модели. График с сайта lhcb-public.web.cern.ch


Признаком все растущей уверенности самих экспериментаторов в реальность наблюдаемого отклонения служит и сама формулировка результата: не просто проверка лептонной универсальности, а указание на ее нарушение. Экспериментаторы обычно очень консервативны в своих заявлениях и такие слова на ветер не бросают. Наконец, стоит отметить, что новая статья направлена в журнал Nature Physics, что тоже нетипично для физики частиц. А поскольку статистическая погрешность все еще доминирует над систематической, можно быть уверенными, что новый сеанс работы коллайдера, LHC Run 3, который стартует в следующем году, позволит еще сильнее обнажить расхождение со Стандартной моделью, — если оно, конечно, сохранится. В дальней перспективе можно рассчитывать как минимум на трехкратное уменьшение погрешностей.

Как же следует интерпретировать отклонение, если оно реально? На этот счет у теоретиков уже есть десятки гипотез и моделей разной степени проработанности. Можно не сомневаться, что в ближайшие дни и недели появятся десятки новых теоретический работ с теми или иными вариантами объяснения или уточнениями прошлых расчетов. Но разбор теоретических интерпретаций — это уже другая история.

А тем временем, судя по синопсису на странице результатов LHCb, мы скоро узнаем и новые результаты LHCb по другим распадам B-мезонов. Хочется надеяться, что расхождение со Стандартной моделью обострится сразу по нескольким фронтам и детектор LHCb, неожиданно для многих, станет нашим флагманом в исследовании глубин микромира.

Источник: LHCb Collaboration. Test of lepton universality in beauty-quark decays // препринт arXiv:2103.11769 [hep-ex].


Игорь Иванов


25 март 2021 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Загадочный двухфотонный пик проступает всё сильнее

В физике элементарных частиц назревает либо самое громкое открытие за последние 30 лет, либо — самое сильное разочарование. В декабре прошлого года в данных Большого адронного коллайдера обнаружились

Двухфотонный пик исчез в новых данных коллайдера

На конференции ICHEP 2016 обнародованы новые результаты Большого адронного коллайдера по загадочному двухфотонному пику при массе 750 ГэВ, намеки на который появились полгода назад. Сейчас, на основе

Хиггсовский бозон выглядит стандартным в данных 2016 года

На прошедшей в марте серии конференций Moriond 2017 были впервые представлены результаты Большого адронного коллайдера, полученные на всей статистике 2016 года. Никаких серьезных отклонений от

Процесс рождения ttH окончательно открыт, но уже не вызывает энтузиазма теоретиков

После нескольких лет поисков коллаборации ATLAS и CMS наконец сообщили о надежном открытии процесса рождения хиггсовского бозона в сопровождении топ-кварк-антикварковой пары. Интенсивность рождения в

ICHEP 2018: спиновые корреляции при рождении топ-кварков существенно расходятся с теорией

Большой адронный коллайдер, похоже, наткнулся еще на одну аномалию. Коллаборация ATLAS, изучив процесс рождения топ-кварка и антикварка и измерив корреляцию между их спинами, получила странный

Загадочное отклонение, обнаруженное CMS в статистике Run 1, не подтвердилось в данных 2016 года

Выполняя рутинный поиск эффектов Новой физики в канале рождения мюонных пар и b-струй, коллаборация CMS обнаружила в данных Run 1 неожиданно сильное отклонение от фона при инвариантной массе мюонной
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Ирина Лёвшина и её пластилиновые копии известных картинКак работает бумеранг и кто его изобрел?В Перу обнаружили древние захоронения — какие секреты хранят останки?10 лесов, которые наносят природе непоправимый вредСамый большой клад золотых монет в Великобритании«Оргонный накопитель» Вильгельма РайхаТайны космоса: вселенская панспермия?Насыпь в крепость