» » Электрические органы у разных групп рыб регулируются сходными генами

Электрические органы у разных групп рыб регулируются сходными генами


Электрические органы у разных групп рыб регулируются сходными генами

Электрический угорь имеет самые специализированные электрические органы, они протягиваются почти по всей длине его тела и могут генерировать разряд примерно в 600 вольт. Теперь стала известна генетическая база их работы. Фото с сайта realmonstrosities.com


Биологи расшифровали генетическую базу, на которой строятся электрические органы рыб. Электрический орган — это очень сложное устройство, но оно, тем не менее, появлялось в ходе эволюции параллельно несколько раз, превращая мышцы в биобатареи. Удивительно, но наборы генов, которые участвовали в этом эволюционном фокусе, оказались сходными во всех изученных группах рыб.

Сейчас известно 6 групп рыб, которые приобрели специальные электрические органы (об истории изучения электрических органов рыб, их строении и функциях см. статью «Электрическое чувство»). К ним относятся электрические сомы, электрические угри вместе со всеми своими родичами гимнотами, некоторые представители сомов, ромботелые и электрические скаты, слонорылы (мормириды, см. Mormyridae) и звездочеты — всего около 500 видов рыб.

Устройство электрических органов везде следует единой схеме. Это собранные аккуратными стопками клетки электроциты. К каждому электроциту подводится нервное окончание, всегда с одной стороны. Нервное окончание переходит в широкий синапс, где возбуждение передается на изрядную часть поверхности клетки. Так что клетка оказывается заряженной с одной своей стороны. На другой стороне пластинки электроцита сконцентрированы ионные каналы, так что там, на противоположной от синапса стороне, накачиваются заряженные частицы. Пластинки электроцитов упорядочены по своим полюсам: синапсы с одной стороны, а поверхность с многочисленными ионными каналами — с другой. Получается батарея соединенных клеток с упорядоченной полюсностью, поэтому их токи суммируются. В результате при прохождении нервного сигнала электрический орган выдает разряд определенной величины, которая определяется видоспецифическими свойствами и непосредственными жизненными задачами владельца батареи.

Бесспорно установлено, что электроциты получились из мышечных клеток, которые увеличились в размерах, упорядочились по взаимному расположению и иннервации и избавились от необходимости сокращаться, утеряв ту или иную часть белкового сократительного аппарата. Однако у разных рыб электрические органы настолько разные, настолько различаются по особенностям размещения на теле и строению клеток, по специфике иннервации, что об их общем предке и речи нет. Оно и понятно: электрический орган можно соорудить из любой скелетной мышцы там, где это соответствует рыбьей надобности. Так что электрические органы — это прекрасный пример параллельного появления сложного органа. Замечу, кстати, к вопросу о параллельной эволюции, что электрические органы имелись, возможно, и у некоторых палеозойских ископаемых рыб и стегоцефалов; возможно, они есть и у современных полиптерусов.


Электрические органы у разных групп рыб регулируются сходными генами

Параллельное появление электрических органов в разных группах рыб. Розовым цветом показаны линии, где электрические органы приобретены частью представителей, а красным — где все представители обзавелись ими. Схема из обсуждаемой статьи в Science


Как электрические органы разных рыб организованы на генетическом уровне и как шло их параллельное формирование, разобрались ученые под руководством профессора М. Сассмана (Michael Sussman) из Висконсинского университета.

Для этого специалисты отсеквенировали геном электрического угря (Electrophorus electricus), а затем собрали данные о генах, которые экспрессируются в его электрических органах, почках, сердце, головном и спинном мозге, мышцах, — или, применяя термины, о транскриптомах различных тканей. В этих тканях, как выяснилось, работает около 29 тысяч генов, из них 22 тысячи относятся к белок-кодирующим генам.

Из этого общего набора выделили те гены, которые особенно интенсивно экспрессируются в электрических органах или, наоборот, их присутствие там совершенно незаметно по сравнению со скелетными мышцами или сердцем (это тоже мышечная ткань). Всего таких генов набралось 397. Для сравнения получили соответствующие транскриптомы других электрических рыб: двух гимнотов (Sternopygus macrurus и Eigenmannia virescens), слонорыла Brienomyrus brachyistius и электрического сома (Malapterurus electricus). По данным транскриптомов реконструировали наборы генов и выбрали те, которые были признаны «электрическими» для угря. Далее осталось аккуратно сравнить уровень их экспрессии и составить функциональный спектр полученной выборки генов. В первую очередь обращалось внимание на гены, вовлеченные в регуляцию сокращения мышечных волокон, плотности ионных каналов, структуры синапсов и контролирующие размеры клетки. То есть всё то, что отличает в целом электроцит от мышечной клетки.

Оказалось, что в электрических органах на первый план вышли несколько определенных генов, сходных у всех исследованных видов; для этих генов единообразно изменился уровень экспрессии (повысился или понизился). Действительно, удивляет, что при резких различиях и самих электрических органов, и электроцитов всё же нашлись общие изменения, контролируемые общими генами — и те, и другие в достаточном числе. Эти гены вовлечены во все те метаболические пути, которые обслуживают параллельно возникшие свойства: суммацию возбуждения, дипольную сущность электроцитов, их крупные размеры и потерю сократительной способности.


Электрические органы у разных групп рыб регулируются сходными генами

Экспрессия генов, которые обслуживают специфические свойства электрических органов у пяти видов рыб. Сверху вниз: ядерные факторы транскрипции (Nuclear); гены, регулирующие возбуждение клетки (Excitation); гены, регулирующие размер клетки (Cell Size); гены, вовлеченные в регуляцию сокращения мышечных волокон (Contraction); гены, кодирующие белковый сократительный аппарат (Insulation). Для электрического угря приведены данные по экспрессии в трех типах электрических органов — главном (Main), органе Сакса (Sachs') и органе Хантера (Hunter's). Очевидно, что резкое увеличение и снижение экспрессии единообразно у исследованных видов. Рис. из обсуждаемой статьи в Science


Получается, что конвергентно возникшие сложные органы формировались за счет изменений в регуляции одних и тех же генов. Видимо, для построения сложной схемы, такой, как электрический орган, природа пользуется одними и теми же инструментами, в данном случае — генами. Мы уже обсуждали конвергентное появление сложных признаков за счет сходных генов на примере эхолокации у летучих мышей и дельфинов (см. Конвергентная морфология как следствие конвергенции генов, «Элементы», 15.10.2013). В случае с эхолокацией тоже обнаружилось, что у исключительно далеких групп для организации нового сложного признака изменились одни и те же гены.

Так мало помалу проявляются отдельные кусочки мозаики под названием «молекулярные правила эволюции». Вероятно, следует учитывать, что возможных путей для изменений не так уж много, поскольку число генов, обслуживающих тот или иной признак, не бесконечно; тем более ограничено число возможных, не смертельных, изменений и комбинаций.

Источник: Jason R. Gallant, Lindsay L. Traeger, Jeremy D. Volkening, Howell Moffett, Po-Hao Chen, Carl D. Novina, George N. Phillips Jr., Rene Anand, Gregg B. Wells, Matthew Pinch, Robert Guth, Graciela A. Unguez, James S. Albert, Harold H. Zakon, Manoj P. Samanta, Michael R. Sussman. Genomic basis for the convergent evolution of electric organs // Science. 2014. V. 344. P. 1522–1525.

См. также:
Ю. А. Лабас, В. Г. Черданцев, Е. Н. Глухова. Цитоэмбриологические аспекты эволюции электрических органов рыб // Журнал общей биологии. 2000. Т. 61. № 6. С. 617–637. Интересная статья по данной теме, где объясняется, почему электрические органы имеются только у рыб и многое другое.

Елена Наймарк


28 сентябрь 2019 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Птичьи песни и человеческая речь организуются за счет сходных генов

Изучение экспрессии генов в мозге певчих птиц и их безголосых родичей позволило создать топографическую картину специфической экспрессии, характерной именно для певцов. Набор специфически работающих

Прочтен геном многоножек

Большой международный коллектив ученых расшифровал геном многоножек. Благодаря этому результату теперь на многоножках можно проверять различные концепции об адаптациях к наземной жизни, о строении —

Создан Атлас белков человека

Усилиями большой группы специалистов собраны воедино все имеющиеся данные о белках человеческого тела и их количестве в разных тканях и клетках. Интерактивный «Атлас белков человека» позволяет

Эволюция ионных каналов шла у животных параллельно

Американские биоинформатики предприняли исследование эволюции большой группы генов, связанных с ионными каналами — сложными белковыми молекулами, необходимыми для работы нервных клеток. Выяснилось,

Сотни генов человека всё еще могут заменить аналогичные гены дрожжей

Хотя человека и дрожжи разделяет миллиард лет эволюции, у них гены с общим происхождением и функциями. Оказывается, около половины таких генов человека всё еще способны заменить соответствующие гены

Случайная изменчивость генной экспрессии у Arabidopsis thaliana подчиняется строгим закономерностям

Фенотип определяется не только генами и средой, но и «случайным шумом», который неизбежно присутствует на всех уровнях организации живых систем, в том числе на уровне экспрессии генов. Сравнение
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
«Заливы Каролины»Почему одни нации богатые, а другие — бедные?Люди могут отращивать хрящи, как саламандрыПочему мы стареем? Новая теория ученыхРоссийский аппарат к Луне стартует не раньше 2026 годаОхотник за сокровищами нашел редчайший доисторический кладЧто происходит с океанами Земли?NASA получило новые снимки Большого красного пятна Юпитера