» » У животных, впадающих в спячку, нервные клетки обогреваются белком термогенином

Рис. 1. Активный тринадцатиполосный суслик (слева) и суслик, впавший в спячку (в центре). Справа —" />

У животных, впадающих в спячку, нервные клетки обогреваются белком термогенином


У животных, впадающих в спячку, нервные клетки обогреваются белком термогенином
Рис. 1.[/b] Активный суслик, спящий суслик и ИК-снимок спящего суслика" border=0 width="600">

Рис. 1. Активный тринадцатиполосный суслик (слева) и суслик, впавший в спячку (в центре). Справа — инфракрасный снимок суслика во время зимней спячки, показывающий температуру его тела (чтобы подчеркнуть разницу, ИК-снимок был сделан при комнатной температуре, поэтому его фон красный). Изображение из обсуждаемой статьи в PNAS


Известно, что нервная система животных, впавших в спячку, продолжает реагировать на некоторые раздражители — звуковые, тактильные или тепловые. Но было непонятно, как нейроны могут работать при такой низкой температуре. Изучая параметры спячки тринадцатиполосных сусликов, группа американских ученых выяснила, что за обогрев нейронов у них отвечает белок термогенин — тот самый, благодаря которому образуется тепло в клетках бурого жира.

Температура тела впавших в спячку млекопитающих может опускаться всего до нескольких градусов выше нуля (а в исключительных случаях и ниже нуля, см. B. M. Barnes, 1989. Freeze avoidance in a mammal: Body temperatures below 0 degree C in an Arctic hibernator). Обмен веществ при этом замедляется и ослабляется. Тем не менее животные, находящиеся в спячке, могут реагировать на некоторые раздражители. К примеру, если температура окружающей среды становится слишком низкой, метаболизм спящего животного усиливается, а температура тела повышается, чтобы животное не замерзло насмерть. В экстренных обстоятельствах животное может даже проснуться, среагировав, например, на громкий звук. Всё это говорит о том, что нервная система животных, находящихся в спячке, каким-то образом работает, несмотря на очень низкую температуру тела. Нервная система млекопитающих, не впадающих в спячку, на такое не способна (см. P. O. Chatfield et al., 1948. Effects of cooling on nerve conduction in a hibernator (golden hamster) and non-hibernator (albino rat)).

У млекопитающих есть система, которая помогает согреться малоподвижным и плохо умеющим дрожать новорожденным, а также животным, впадающим в спячку. Это бурый жир — особый вид ткани, который расходует энергию питательных веществ на производство тепла. В митохондриях клеток бурого жира есть особый белок — термогенин (он же — UCP1), через который происходит утечка протонов из межмембранного пространства митохондрий. В норме протоны накапливаются в межмембранном пространстве митохондрий благодаря переработке энергии органических веществ, поступающих с пищей. Затем протоны «утекают» оттуда через встроенный в мембрану митохондрий фермент АТФ-синтазу, использующую их энергию для синтеза молекул АТФ (см. Окислительное фосфорилирование). АТФ — энергетическая «валюта» клетки, играющая роль посредника между процессами запасания энергии и ее траты для нужд самых разных процессов.

Но если протоны не используются для синтеза АТФ, а просто «утекают» через термогенин, их энергия не запасается, а рассеивается в тепло. Поэтому митохондрии с термогенином — такие, как в буром жире, — могут служить «грелками» для клеток, в которых они находятся. Но хотя у впадающих в спячку животных бурого жира много, его отложения расположены таким образом, что не могут согреть головной мозг животного и большую часть его периферических нервов.

Группа ученых из Медицинского института Говарда Хьюза и других университетов США, исследуя тринадцатиполосных сусликов (Ictidomys tridecemlineatus, рис. 1), выяснила, что белок термогенин синтезируется у сусликов не только в буром жире, но и в нервных клетках. Таким образом, они открыли «систему зимнего отопления», которая работает в нервных клетках и позволяет поддерживать нервную систему животных, впавших в спячку, в рабочем состоянии.

Термогенин встречался и в головном мозге, и в нейронах периферической нервной системы тринадцатиполосных сусликов. В других тканях, помимо бурого жира и нервной ткани, термогенин не обнаруживался. Ученые зафиксировали сезонные колебания и самого белка, и его РНК в нейронах сусликов: зимой, при впадении в спячку, их количества существенно росли (рис. 2). В нервных же клетках мышей, не впадающих в спячку, термогенин встречался лишь в следовых количествах, и только в головном мозге.


У животных, впадающих в спячку, нервные клетки обогреваются белком термогенином

Рис. 2. Содержание термогенина в нервных клетках активных (белые столбики, Active) и впавших в спячку (серые столбики, Torpor) тринадцатиполосных сусликов. Brain — мозг, Cortex — кора головного мозга, Spinal Cord — спинной мозг. График из обсуждаемой статьи в PNAS


Чтобы проверить свойства найденного в нервных клетках белка, ученые ввели его ген в культивируемые клетки. Как и в природе, белок самостоятельно встраивался в митохондрии клеток. Присутствие белка в митохондриях повышало потребление клетками кислорода, что подтверждало: найденный белок работает так же, как и известные ранее «отопительные» белки — то есть через него «утекают» протоны, создающие потенциал на митохондриальных мембранах. Дело в том, что когда протоны, с таким трудом накопленные в межмембранном пространстве митохондрий, начинают «утекать» оттуда, работа систем, накачивающих их туда, усиливается в попытке покрыть ущерб от утечки. При этом сжигание органических веществ, а значит, и потребление кислорода, усиливаются.


У животных, впадающих в спячку, нервные клетки обогреваются белком термогенином

Рис. 3. Температуры бурого жира (BAT), коры головного мозга (Cortex) и белого жира (WAT) у сусликов, впавших в спячку. Точки, соединенные сплошной линией, соответсовуют одной особи. Точечной линией показана температура окружающей среды (ambient T). График из обсуждаемой статьи в PNAS


Потребление кислорода усиливалось под действием жирной пальмитиновой кислоты. Жирные кислоты так же, как термогенин, участвуют в «сбрасывании» энергии протонов из межмембранного пространства митохондрий. Захватив протон, они способны проникать через мембрану митохондрий, и такая «контрабанда» — еще один источник утечки протонов. Кроме того, жирные кислоты активируют и сам белок термогенин, который с их помощью начинает работать более активно.

Интересно, что температура мозга находящихся в спячке сусликов оказалась даже более высокой, чем температура их бурого жира (рис. 3). И это несмотря на то, что на единицу массы бурого жира приходилось больше термогенина, чем на единицу массы нервной ткани. Пока непонятно, за счет чего нервные клетки получают такое преимущество.

Также интересно, что в нейронах сусликов не обнаруживалось молекул, регулирующих наработку термогенина в буром жире (этот механизм описан в статье S. Kajimura et al., 2008. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex). По-видимому, механизм регуляции синтеза термогенина в нервных клетках отличается от такового в клетках бурого жира.

Источник: W. J. Laursen et al. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation // PNAS. DOI:10.1073/pnas.1421419112.

Юлия Кондратенко


28 сентябрь 2019 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Рецептор света, родственный родопсину сетчатки, регулирует тонус сосудов

Американские ученые обнаружили в сосудах мышей родственный родопсину белок, благодаря которому сосуды расслабляются под действием света. Это открывает перспективы разработки новых методов терапии

Искусственное удлинение светового дня приводит к ожирению

Голландские ученые продемонстрировали механизм, посредством которого искусственное увеличение светового дня создает предрасположенность к ожирению. Оказывается, под действием света

Панды минимизируют энергетические затраты, чтобы обходиться бамбуковой диетой

Китайские ученые выяснили, как пандам удается обходиться скромным рационом, состоящим почти исключительно из побегов бамбука. Оказалось, что панды расходуют значительно меньше энергии, чем другие

Антитела к тау-белку смягчают последствия черепно-мозговых травм

Ученые получили антитела, с помощью которых можно бороться с энцефалопатией — заболеванием, возникающим на фоне тяжелых черепно-мозговых травм, при котором в мозге накапливаются бляшки из тау-белка,

Кишечную палочку научили встраиваться в клетку дрожжей и работать митохондрией

Общепринятая на данный момент теория симбиогенеза предполагает, что митохондрии в эукариотических клетках произошли от симбиотических бактерий. Однако поиски предковой бактерии и реконструкция

Маленькие митохондрии усиливают взаимодействие между нейронами

Митохондрии в дендритах и в аксонах нейрона неодинаковы: первые сильно удлинены, а вторые, как правило, имеют форму небольших шариков. Для формирования мелких аксональных митохондрий нужен белок MFF.
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
«Заливы Каролины»Почему одни нации богатые, а другие — бедные?Люди могут отращивать хрящи, как саламандрыПочему мы стареем? Новая теория ученыхРоссийский аппарат к Луне стартует не раньше 2026 годаОхотник за сокровищами нашел редчайший доисторический кладЧто происходит с океанами Земли?NASA получило новые снимки Большого красного пятна Юпитера