» » Новому тетракварку скоро выдадут паспорт

Новому тетракварку скоро выдадут паспорт

Физики определили параметры недавно открытого экзотического тетракварка. Он оказался очень большим и беспрецедентно долгоживущим.

Об открытии новой элементарной частицы, экзотического тетракварка Tcc+, физики коллаборации LHCb (ЦЕРН) объявили в конце июля, после чего её необычные свойства начали активно обсуждаться в профессиональном сообществе. 3 сентября 2021 года коллаборация LHCb представила уточненные «паспортные данные» открытой частицы. Оказалось, она живет беспрецедентно дольше своих собратьев — в 100-5000 раз и имеет большой размер, примерно равный ядру атома урана.

Новому тетракварку скоро выдадут паспорт
Одна из возможных внутренних структур новой частицы. (Источник: ЦЕРН) Открыть в полном размере ‹ ›

Физики также установили некоторые квантовые числа нового тетракварка и выдвинули гипотезы о его внутренней структуре. Однако эти данные требуют дополнительной проверки. Результаты исследования направлены в журналы Nature Physics и Nature Communications, их препринты доступны на сайте arXiv [1] и [2]. Участники коллаборации посвятили научную публикацию об открытии Tcc+ памяти выдающегося физика Семена Исааковича Эйдельмана (1948-2021) , который проработал в ИЯФ СО РАН и НГУ много лет.

Экзотический тетракварк Tcc+ сильно выделяется среди собратьев, обладая уникальными свойствами. Это единственный известный науке дважды очарованный тетракварк, то есть содержащий сразу два очарованных кварка, но не имеющий в своем составе очарованных антикварков. Поэтому его характеристики, которые условно называют «паспортом частицы», представляют большой научный интерес. Напомним, очарование (также чарм или шарм, по-английски charm, откуда стандартное обозначение: С) — одно из свойств элементарных частиц – их квантовое число. Тетракварк — элементарная частица, состоящая из двух кварков и двух антикварков.

Главные характеристики частиц, отличающие одну от другой, — это их масса, время жизни и квантовые числа. Масса частицы в квантовой механике измеряется также в энергетических величинах, поскольку связана с суммарной энергией знаменитым соотношением E=mc2. По уточненным данным, масса Tcc+ составляет 3874.73 МэВ, то есть меньше суммы масс D0 и D*+ мезонов на 359 кэВ. То, что масса тетракварка очень близка к сумме масс D0 и D*+ мезонов, важно, поскольку может указывать на молекулярную структуру тетракварка (по аналогии с обычной молекулой, две тяжелые частицы связаны, но находятся друг относительно друга на большом расстоянии). Соответственно, Tcc+ может распадаться на систему частиц, содержащую эти мезоны. Собственно, по такому распаду на три мезона D0D0?+ и была обнаружена, а затем реконструирована новая частица.

Для полноты «паспортных данных» частицы необходимо определить вероятности распада тетракварка во все возможные конечные состояния. Косвенные признаки указывают на то, что, в общей сложности, есть три наиболее вероятных конечных состояния, помимо D0D0?+, ещё и D0D+?0 , и D0D+?. В настоящее время проблема изучения конечных состояний связана с тем, что LHCb рекордно хорошо регистрирует и измеряет параметры заряженных частиц и гораздо хуже — нейтральных.

В случае D0D0?+ все частицы в конечном состоянии заряженные, поэтому и удалось произвести точные измерения. А если имеется нейтральная частица, например, ?0, то в конечном состоянии она распадается на два гамма-кванта (?), и необходимо измерять направление их вылета и энергии. Но энергетическое разрешение для гамма-квантов много хуже, чем для заряженных частиц, поэтому выделить сигнал на уровне фона в этом случае значительно труднее. Авторы работы видят косвенные признаки распада тетракварка в состояния с гамма-квантами, но полностью его реконструировать пока не могут. Для этого требуется больше времени и больше статистики.

Исследователи полагают, что полученные интереснейшие результаты будут стимулировать коллаборацию LHCb, которая тратит заметную часть усилий на изучение прелестных мезонов и прелестных барионов, прицельно изучать и новый подвид частиц. Ближайший шаг — надежное установление всех квантовых чисел Tcc+. Это для элементарной частицы сравнимо с получением паспорта у человека. Она тогда перейдёт из кандидатов в «настоящие» частицы. Только после этого ей присваивается официальное название. В отличие от людей, имя частице дается не произвольно, а в соответствии с установленной номенклатурой, в зависимости от квантовых чисел и кваркового состава. Открытый тетракварк не укладывается в уже хорошо установленные правила. Для него, возможно, придется придумывать что-то новое, поэтому предварительное имя может поменяться.

LHCb (Large Hadron Collider beauty experiment) — один из детекторов Большого адронного коллайдера (LHC), предназначенный для изучения B-мезонов, то есть частиц, содержащих b-кварк («прелестный» кварк). Построен LHC в ЦЕРНе (CERN, Европейская организация по ядерным исследованиям). В коллаборацию LHCb входят несколько российских научных организаций: Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), Новосибирский государственный университет (НГУ), Институт теоретической и экспериментальной физики им. А. И. Алиханова НИЦ «Курчатовский институт» (ИТЭФ). Всего на LHC с начала работы коллайдера открыто 62 новые элементарные частицы, из них 55 было обнаружено коллаборацией LHCb, а 6 из них — группой ИТЭФ.

По материалам Института ядерной физики имени Г. И. Будкера СО РАН

07 сентябрь 2021 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Мюоны наносят удар по Стандартной модели?

Физики сообщили, что магнитный момент мюона всё же больше, чем предсказывает теория, и если результат подтвердится, то, возможно, это приведёт к уточнению Стандартной модели микромира и открытию

Нейтрино способно толкать ядра атомов

Физики доказали существование нового взаимодействия нейтрино с веществом.

Неизвестная частица обнаружена в ЦЕРН

Один из детекторов Большого адронного коллайдера обнаружил новую частицу, состоящую из четырех очарованных кварков. Физики полагают, что это первый представитель неописанного класса частиц.

Может ли новая частица изменить судьбу Вселенной?

Все знают, что Вселенная постоянно расширяется, однако никто не знает, как быстро она это делает. С тех пор, как наше мироздание возникло в результате взрыва крошечного пятнышка, которое буквально за

Обнародованы первые результаты LHC Run 2

15 декабря в ЦЕРНе прошел традиционный предновогодний семинар, на котором была представлена первая порция серьезных результатов нового сеанса работы Большого адронного коллайдера. Две крупнейших

На LHC обнаружен еще один намек на нарушение Стандартной модели

На днях из ЦЕРНа пришло известие о том, что еще одно измерение Большого адронного коллайдера расходится с предсказаниями Стандартной модели. Результат, обнародованный коллаборацией LHCb после более
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Удивительные животные из воздушных шаров японского художника Масаеси МацумотоУченый Роберт Ланца объяснил, почему смерти не существуетИстория эволюции электромобилейКак Репин Айвазовскому Пушкина нарисовать помогНевероятно реалистичная скульптура «Путешественник»Это самые быстрые серийные мотоциклы в миреВ 2023 году NASA запустит в космос новый луноход VIPER. Чем он займется?Ядерная ракета Vasimr доставит людей на Марс за один месяц. Опасна ли она?