» » Материал для нового вида «флешек»

Материал для нового вида «флешек»

Физикам впервые удалось непосредственно исследовать электрические свойства оксида гафния, считающегося перспективным материалом для создания нового вида флеш-памяти – «флешек».

Флеш-память, базирующаяся на использовании транзисторов для хранения информации, получила широкое распространение в последние десятилетия. На её основе создаются устройства энергонезависимой, то есть сохраняющей информацию при выключении компьютера памяти — твердотельные диски (SSD), различные карты памяти и USB-флеш-накопители, широко известные под разговорным названием «флешки». Их ёмкость постоянно растёт, и «флешки» уже фактически вытеснили из бытового использования лазерные компакт-диски. Однако такая флеш-память обладает серьёзным недостатком – ограниченным сроком службы. Обычная «флешка» выдерживает несколько тысяч циклов перезаписи, а самые дорогие SSD – несколько сот тысяч. После этого они начинают давать сбои, терять информацию, а то и вовсе отказываются работать.

Материал для нового вида «флешек»
Рис.1. Схема эксперимента по измерению электрического потенциала в слоях сегнетоэлектрического HfO2. Прототип ячейки памяти помещён в сверхвысоковакуумную камеру, где был подключён к аппаратуре, контролирующей её электрическое состояние и позволяющий перезаписывать сохраненную в ней информацию прямо во время облучения. После этого на структуру был направлен сфокусированный пучок рентгеновского излучения. Возбужденные этой волной фотоэлектроны были зафиксированы с помощью специального анализатора.
Материал для нового вида «флешек»
Рис. 2. Исследовательский центр по физике частиц DESY (Гамбург, ФРГ). Показана окружность длиной 2,3 км синхротрона PETRA III, самого большого яркого накопительного источника света в мире (фото DESY). ‹ › Открыть в полном размере

Поэтому во всём мире широко ведутся работы по разработке новых видов энергонезависимой памяти, обладающей большей долговечностью и скоростью работы. Одно из перспективных направлений исследований – использование сегнетоэлектриков – материалов, способных поддерживать постоянную поляризацию, грубо говоря, собственное электрическое поле, которое может быть переориентировано приложением внешнего электрического поля. Это подобно постоянным магнитам и их перемагничиванию, за что данные материалы по аналогии с ферромагнетиками также называют ферроэлектриками. Данное свойство позволяет применять сегнетоэлектрики для хранения двоичной информации.

Одним из наиболее перспективных материалов для новых «флешек» считается оксид гафния (HfO2), поскольку все другие известные сегнетоэлектрики по разным причинам не могут быть использованы в современной наноэлектронике. Как диэлектрик он давно используется при изготовлении транзисторов. Но около десяти лет назад немецкие физики обнаружили, что при определённых условиях (легировании, температурной обработке и т.д.) очень тонкий слой оксида гафния можно «переключить» в необычную для него кристаллическую структуру (фазу), обладающую сегнетоэлектрическими свойствами.

Элементарная ячейка нового типа памяти представляет собой тончайший — менее 10 нанометров — слой сегнетоэлектрического оксида гафния, к которому с двух сторон примыкают управляющие электроды. Конструкция похожа на обычный электрический конденсатор, а потому часто называется сегнетоэлектрическим конденсатором.

Чтобы эффективно его использовать, необходимо добиться максимально возможной величины поляризации, а для этого — детально изучить физические свойства этого нанослоя. В первую очередь необходимо знать, как распределяется электрический потенциал внутри него при подаче напряжения на электроды. За десять лет, прошедших с момента открытия сегнетоэлектрической фазы HfO2, никому из исследователей так и не удалось изучить это распределение потенциала непосредственно, они использовали в своей работе лишь различные математические модели.

А вот группе исследователей из лаборатории функциональных материалов и устройств для наноэлектроники МФТИ и их коллегам из Германии и США удалось создать уникальную методику измерения распределения электрического потенциала сегнетоэлектрического конденсатора. Об этом они рассказали в авторитетном научном журнале по физике твёрдого тела, наноструктурам и материаловедению «Nanoscale».

Авторы работы применили так называемую высокоэнергетическую рентгеновскую фотоэлектронную спектроскопию. В основе специальной методики, разработанной сотрудниками МФТИ, лежит явление фотоэффекта, при котором электромагнитное излучение «выбивает» из материала электроны. Измеряя энергию вылетающих из сегнетоэлектрика фотоэлектронов в сочетании с определенными схемами облучения структуры, удаётся получить картину электрического потенциала по всей толщине слоя с нанометровым разрешением.

Метод требовал применения рентгеновского излучения, которое можно получить только на специальных ускорителях-синхротронах. Проверку методики на изготовленных в МФТИ прототипах будущих ячеек «новой памяти» исследователи провели на синхротроне PETRA III в исследовательском центре по физике частиц DESY, расположенном в Гамбурге (ФРГ).

Исследователи ожидают, что созданные в МФТИ сегнетоэлектрические элементы памяти в будущем смогут работать на порядок быстрее нынешних флешек или твердотельных дисков и выдерживать 1010 циклов перезаписи, что в сто тысяч раз больше, чем допускают их лучшие современные образцы.

По материалам МФТИ.

02 декабрь 2020 /
  • Не нравится
  • +1
  • Нравится

Похожие новости

Память связали с нейронными хромосомами

Нейроны запоминают информацию в несколько этапов, постепенно изменяя структуру своих хромосом.

Сахар-рафинад послужил матрицей для эластичного аккумулятора

Американские ученые разработали метод получения эластичных аккумуляторов, используя кубики сахара в качестве шаблона для получения гибких электродов. Полученный таким образом натрий-ионный

Создан диод из девяти атомов углерода

Испанские ученые создали молекулярный диод — нонадиин-1,8, состоящий всего из 9 атомов углерода и 12 атомов водорода. Он оказался не только самым маленьким диодом в мире, но и наиболее эффективным

В метаматериале из арсенида галлия реализовано сверхбыстрое оптическое переключение

Исследователи из МГУ в сотрудничестве с коллегами из США и Германии экспериментально продемонстрировали эффект сверхбыстрого оптического переключения в метаматериалах. Обнаруженный эффект может найти

Болотное растение подсказало идею создания прочных и эластичных аэрогелей из графена

Китайские химики получили прочные и эластичные аэрогели из графена, сымитировав строение стебля болотного растения талии беловатой. Новый материал выдерживает многочисленные циклы

«В начале было Слово…» или След на воде (часть 3)

В итоге, в мае 1982 года был сделан вывод, для краткости изложения и лучшего понимания которого я воспользуюсь многовековым спором идеалистов и материалистов.
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Российский бомбардировщик будет незаметен для вражеской техники. Что о нем еще известно?Из-за чего румынская пещера Мовиле считается ядовитой?Шедевр нашего кино: «Антон Иванович сердится». Почему он считается гениальным творением5 самых умных животных на ЗемлеПочему российский атомный ледокол «Севморпуть» застрял в водах Испании?Надежда стратегической авиации РоссииКак встречали Новый год в России. 1917-1941Самые популярные электромобили в разных странах мира