» » Квантовая гравитация может приводить к еще одному наблюдаемому эффекту

Квантовая гравитация может приводить к еще одному наблюдаемому эффекту


Квантовая гравитация может приводить к еще одному наблюдаемому эффекту

Квантовая гравитация может приводить к еще одному наблюдаемому эффекту

Рис. 1. Негладкая микроскопическая структура пространства может являться причиной нарушения лоренц-инвариантности; нарушение тем сильнее, чем больше энергия частиц. Из-за этого фотоны, рожденные одновременно в каком-то далеком космическом взрыве, могут лететь со слегка различающейся скоростью и попасть в детектор в разные моменты времени. Оказывается, этот эффект может еще приводить к эффективной «вязкости вакуума», которая тоже будет влиять на движение частиц. Рисунок из статьи: Ли Смолин, 2004. Атомы пространства и времени


В рамках квантовой гравитации негладкая микроскопическая структура пространства приводит к нарушению лоренц-инвариатности, из-за которого скорости фотонов и других частиц сверхвысокой энергии отличаются от обычной скорости света. Оказывается, это не единственный наблюдаемый эффект таких теорий. Согласно новой теоретической статье в Physical Review Letters, дисперсия в вакууме обязана также приводить к эффективной «вязкости вакуума», которая тоже будет влиять на движение частиц. Отсутствие подобных эффектов в астрофизических данных позволяет наложить сильные ограничения на эту вязкость.


Астрофизическая проверка эффектов квантовой гравитации

Один из самых впечатляющих примеров единства фундаментальных физических исследований — это когда астрофизика, изучающая явления на космических масштабах, помогает узнать что-то новое про свойства микромира. Физики уверены, что новые эффекты в микромире есть, просто они становятся сильными на таких малых масштабах, которые недоступны современным ускорителям. А на доступных прямому измерению масштабах, то есть вплоть до 10–19 м, они слишком слабы и поэтому пока остаются неоткрытыми. Однако есть два способа сделать эти эффекты более заметными: либо подождать очень долго — и тогда слабые эффекты накопятся за длительное время воздействия, — либо использовать частицы сверхвысоких энергий, для которых новые эффекты могут быть намного сильнее. И Вселенная дает нам обе эти возможности.

Вселенная заполнена фотонами, протонами и другими частицами самых разных энергий, в том числе и очень высоких, недоступных коллайдерам. Кроме того, эти частицы могут лететь сквозь космос очень долго, миллионы и миллиарды лет, пока не столкнутся с каким-то плотным веществом, например с Землей. Астрофизические эксперименты позволяют зарегистрировать такие частицы, измерить их энергии, потоки, направления прилета и в результате «прочитать» запасенную в них информацию. Сравнивая эту астрофизическую информацию с предсказаниями теорий, в которых постулируются те или иные новые свойства микромира, можно проверять теории и устанавливать ограничения на силу гипотетических эффектов. На «Элементах» были даже разобраны две задачи на эту тему: Время жизни фотона и Столкновение фотонов.

Одна из самых интригующих возможностей тут — это проверка того, как вообще устроено само пространство на микроскопических масштабах. Для подавляющего большинства явлений пространство — или пространство-время, если речь идет про релятивистские явления — можно считать просто однородным вместилищем для всех частиц и полей, которое своих динамических характеристик не имеет. При описании явлений сильной гравитации нужно от этой картины отойти; в общей теории относительности пространство-время уже обладает динамической сущностью, может искривляться, растягиваться, колебаться. В рамках квантовой теории можно даже оперировать с квантами колебаний пространства-времени — гравитонами, — по крайней мере, пока их энергии невелики. Но во всех этих случаях пространство-время, в локальном смысле, все равно считается чем-то гладким, бесструктурным.

Однако на сверхмалых расстояниях, сопоставимых с планковской длиной LПл ~ 10–35 м, эффекты квантовой гравитации становятся настолько сильными, что эти описания перестают работать. На этих масштабах правильнее уже описывать мир в каких-то новых переменных со своими особыми физическими законами; а обычное гладкое пространство-время получается лишь в результате усреднения этих новых микроскопических переменных по относительно большой области. Пока что неизвестно, как построить правильную — то есть математически непротиворечивую, предсказательную, и при этом согласующуюся с реальностью — теорию пространства-времени-гравитации на таком масштабе, хотя, конечно усилия тут предпринимаются огромные. Однако ясно, что такое описание пространства будет существенно отличаться от простого «вместилища» для частиц. А это значит, что при движении частиц в пространстве возникнут новые эффекты, которые ни классической механикой, ни теорией относительности не предсказываются.

Теоретическому поиску таких эффектов в разных моделях и их экспериментальной проверке посвящено множество работ. Стандартное направление деятельности — это предсказание эффектов нарушения лоренц-инвариантности, той симметричности пространства мира, на которую опирается вся экспериментально проверенная физика. Нарушение лоренц-инвариантности может привести к тому, что фотоны или другие частицы сверхвысоких энергий будут двигаться со скоростью, отличающейся от обычной скорости света. Более того, это отличие зависит от энергии частицы. Поэтому если в каком-то очень далеком космическом взрыве одновременно родились фотоны разной энергии, то они, пройдя миллиарды световых лет со слегка различающейся скоростью, попадут к нам в детектор в разные моменты времени (см. рис. 1). Это один из примеров того, как астрофизические наблюдения могут рассказать о свойствах микромира. Кстати, когда три года назад появилось сенсационное сообщение коллаборации OPERA про якобы сверхсветовое движение нейтрино, эта область деятельность испытала резкий, но, правда, кратковременный подъем.


«Вязкость вакуума»

В статье, вышедшей на днях в журнале Physical Review Letters, обсуждается еще один наблюдательный эффект, к которому может приводить нарушение лоренц-инвариантности, — диссипация при движении частиц высокой энергии. Подчеркнем отдельно: диссипация при движении сквозь вакуум!

Аргументация авторов начинается с напоминания известного эффекта классической электродинамики. Если свет движется сквозь какую-то среду с дисперсией (то есть коэффициент преломления зависит от частоты света), то эта среда обязана обладать диссипацией — приводить к постепенному затуханию движущегося в ней света. Эта связь очень жесткая; она не требует информации о каких-то свойствах самой среды, а опирается на самые фундаментальные законы, например на причинность физических явлений (среда не может начать реагировать на свет до того, как свет в нее попал). Математическая формулировка этого закона описывается соотношениями Крамерса—Кронига.

Нечто аналогичное может происходить и в теориях с нарушенной лоренц-инвариантностью, в которых гладкое пространство является не первичным, а побочным, усредненным явлением. Несмотря на то что мы еще не знаем, какова на самом деле квантовая природа гравитации и как именно новые микроскопические степени свободы складываются в гладкое пространство, мы можем строить такие теории по аналогии с известными моделями классической физики, надеясь, что эти аналоги гравитации ухватят некую суть реальной ситуации. Такие параллели между гравитацией и другими физическими системами — вещь довольно распространенная, см. подробнейший научный обзор этой темы. Они особенно популярны при изучении черных дыр (см., например, новости Черные дыры из стали и пустоты и В бозе-эйнштейновском конденсате создали звуковую черную дыру, а также главу из книги Л. Сасскинда «Битва при черной дыре», рис. 2).


Квантовая гравитация может приводить к еще одному наблюдаемому эффекту

Рис. 2. Гидродинамическая аналогия черной дыры и горизонта событий. Если вода в пруду выливается через отверстие в дне с достаточно большой скоростью, то в воде будет существовать некоторая область, попав в которую головастик уже не сможет выбраться наружу. Рисунок из книги Л. Сасскинда «Битва при черной дыре»


Авторы статьи изучили, как при таком описательном подходе соотносятся друг с другом дисперсия и диссипация. Варианты получаются разные, но один из самых естественных — возникновение у вакуума некоторой вязкости. Эта вязкость может проявляться по-разному: частицы сверхвысокой энергии могут просто тормозиться при движении в вакууме, а могут вообще исчезать. Маленькое уточнение: так эти эффекты будут выглядеть в нашем, доступном физическим наблюдениям, мире. В полной же теории, в которой наряду с обычными частицами учитываются также и новые динамические степени свободы, никакого исчезновения энергии не происходит; обычная частица просто возбуждает недоступные наблюдению степени свободы.

Как и в случае отклонения скоростей от общепринятой скорости света, здесь предсказывается, что эффекты диссипации сильно заметны только для частиц недостижимо высокой энергии и сильно ослаблены для умеренно энергетичных частиц. Однако важно тут то, что это ослабление проявляется намного сильнее для дисперсии, чем для диссипации. При какой-нибудь умеренно большой энергии эффекты диссипации могут еще быть заметными, но дисперсия уже станет пренебрежимо малой. Поэтому открывается новая экспериментальная возможность — обнаружить нарушение лоренц-инвариантности не через непостоянство скорости частиц высокой энергии, как пытались до сих пор, а через обнаружение «вязкого трения вакуума».

Астрофизические наблюдения ни на какие подобные эффекты пока не указывают, ни в космических лучах сверхвысокой энергии, ни в спектре фотонов ТэВных энергий от далеких квазаров. Это позволяет наложить ограничение сверху на величину вязкости вакуума. Традиционно все величины, относящиеся к квантовым эффектам гравитации, выражают в естественных планковских единицах. Они строятся из фундаментальных физических констант: гравитационной постоянной G, скорости света c и постоянной Планка h или устоявшихся их комбинаций: планковской длины, планковского времени и т. п. Для кинематической вязкости, которая измеряется в квадратных метрах на секунду, естественной планковской единицей является LПл·c. Вычисления авторов показали, что по астрофизическим наблюдениям вязкость вакуума не может превышать примерно 10–30 от этой единицы, что более чем на 50 порядков меньше вязкости воздуха.

К сожалению, без конкретной квантовой теории гравитации это описательное ограничение нельзя просто так превратить в ограничение на физические свойства тех новых степеней свободы, из которых при усреднении складывается гладкое пространство. Но если какая-то теоретическая модель сможет сосчитать эту величину в рамках своих предположений, результаты данной статьи покажут, как эти предсказания связать с реальными наблюдениями.

Источник: Stefano Liberati and Luca Maccione. Astrophysical Constraints on Planck Scale Dissipative Phenomena // Physical Review Letters 112, 151301 (2014); статья также доступна как е-принт arXiv:1309.7296 [gr-qc].

Игорь Иванов


03 октябрь 2019 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Наконец-то обнаружен аналог излучения Хокинга в холодном квантовом газе

Не имея возможности создавать реальные черные дыры, физики научились воспроизводить их основные черты в других системах, доступных лабораторному изучению. Не так давно они создали аналог горизонта

Детектор ATLAS увидел рассеяние света на свете

Коллаборация ATLAS, работающая на Большом адронном коллайдере, сообщила о надежной регистрации знаменитого, но трудного для измерения процесса квантовой электродинамики — рассеяния света на свете.

Пять теорий путешествий во времени, которые могут сработать

5. Машина времени: цилиндр ТиплераЧтобы использовать машину времени на основе цилиндра Типлера, вам нужно покинуть Землю на космическом корабле и отправиться в космос к цилиндру, который там

Факты теоретической физики в фильме «Интерстеллар»

1. В настоящее время самые благоприятные для человека путешествия во времени созданы на орбите Земли. Чем дольше космонавты и астронавты находятся на борту Международной космической станции,

Как гравитация может объяснить, почему время идет только вперед?

Мы не можем остановить время. Даже в пробке, когда время, кажется, замирает и останавливается. Экономия света в дневное время тоже не помогает, время неизбежно стремится вперед. Почему не назад?

10 потрясающих открытий в физике

Изучать физику значит изучать Вселенную.
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
«Заливы Каролины»Почему одни нации богатые, а другие — бедные?Люди могут отращивать хрящи, как саламандрыПочему мы стареем? Новая теория ученыхРоссийский аппарат к Луне стартует не раньше 2026 годаОхотник за сокровищами нашел редчайший доисторический кладNASA получило новые снимки Большого красного пятна ЮпитераЧто происходит с океанами Земли?