» » Детектор ATLAS увидел рассеяние света на свете

Детектор ATLAS увидел рассеяние света на свете


Детектор ATLAS увидел рассеяние света на свете

Рис. 1. Рождение двух фотонов умеренно большой энергии в детекторе ATLAS без сопровождения других частиц. Рисунок с сайта cerncourier.com


Коллаборация ATLAS, работающая на Большом адронном коллайдере, сообщила о надежной регистрации знаменитого, но трудного для измерения процесса квантовой электродинамики — рассеяния света на свете. Это удалось сделать после обработки данных по столкновению тяжелых ядер большой энергии в 2015 году. Измеренные характеристики процесса в пределах погрешностей совпадают с предсказаниями Стандартной модели.

Процесс упругого столкновения двух фотонов ?? -> ??, или «рассеяние света на свете», — это один из знаменитых примеров того, как квантовые эффекты меняют законы классической электродинамики. В рамках обычной оптики два луча света, проходящие друг сквозь друга в вакууме, никак не взаимодействуют, не влияют друг на друга. В квантовой теории поля такое влияние становится возможным: один из фотонов на короткое время превращается в виртуальную пару заряженных частиц, и на ней рассеивается встречный фотон (рис. 2).


Детектор ATLAS увидел рассеяние света на свете

Рис. 2. Фейнмановская диаграмма, описывающая процесс столкновения двух фотонов. Рисунок с сайта es.wikipedia.org


Для обычных оптических фотонов сечение этого рассеяния настолько мало, что нет никакого шанса зарегистрировать его в лаборатории. Однако с повышением энергии фотонов сечение резко растет, и его можно заметить на космических масштабах (см. на эту тему задачу Столкновение фотонов). В лабораторных экспериментах с элементарными частицами «рассеяние света на свете» для больших энергий фотонов тоже иногда встречается. Самые известные варианты этого процесса, уже зарегистрированные в эксперименте, — это рождение двух фотонов через промежуточные мезоны в электрон-позитронных столкновениях, а также рассеяние либо расщепление фотона на два в поле тяжелого ядра.

И вот этот красивый процесс впервые увидели на Большом адронном коллайдере: коллаборация ATLAS опубликовала на днях статью Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC (arXiv:1702.01625) с результатами этого анализа. Статья направлена в журнал Nature Physics; популярный рассказ об этой работе появился в журнале CERN Courier.

Анализ базируется на данных, набранных в 2015 году во время специального сеанса ядерных столкновений. Польза от тяжелых ядер в том, что из-за большого электрического заряда вокруг них создается сильное электрическое поле. Два встречных ядра могут «промазать», пролететь мимо друг друга без столкновений, но их электрические поля — столкнутся. Очень важно, что сами ядра при этом летят с околосветовой скоростью. То, что выглядит как обычное электростатическое поле для покоящегося ядра, превращается для быстрого ядра в поле электромагнитное, то есть в поток почти реальных фотонов большой плотности, которые летят рядом с ядром. Может показаться удивительным, что одна и та же система (в нашем случае — ядро и его поле) выглядят совершенно по-разному в разных системах отсчета, но таковы свойства квантового микромира; подробнее об этом на примере сильного взаимодействия читайте в статье Многоликий протон. В итоге эти почти реальные фотоны от двух встречных ядер сталкиваются и разлетаются в стороны, — именно их и регистрирует детектор (рис. 3). Подробнее про двухфотонные процессы можно узнать из серии видеолекций В. Г. Сербо из НГУ.


Детектор ATLAS увидел рассеяние света на свете

Рис. 3. Два встречных ядра высокой энергии могут столкнуться не напрямую, а своими электромагнитными полями, и в этом электромагнитном столкновении может родиться система частиц X. Рассеяние света на свете — это процесс, когда X — это два фотона большой энергии. Изображение из обсуждаемой статьи


Характерная особенность такого процесса — его исключительная чистота, отсутствие в детекторе посторонних частиц. На рис. 1 показано одно такое событие-кандидат в рассеяние света на свете. Вместо тысяч частиц, которые обычно видит детектор в жестких ядерных столкновениях, здесь всё пусто, есть только два фотона с противоположными поперечными импульсами. Благодаря этому, отбор событий производится очень эффективно: среди миллиардов событий, зарегистрированных детектором ATLAS, только 13 прошли все стадии отбора. Конечно, во всех поисках может существовать фон из посторонних процессов, но для этого анализа он совсем низкий: по результатам моделирования ожидалось всего 2,6±0,7 фоновых событий. Таким образом, ATLAS видит существенное превышение данных над фоном и сообщает о надежных указаниях на рассеяние света на свете в области энергий несколько ГэВ (статистическая значимость эффекта — 4,4?).

Даже с 13 событиями можно провести некоторый статистический анализ. Коллаборация ATLAS изучила распределение событий по углам вылета, поперечному импульсу и его дисбалансу, по инвариантной массе, а также измерила сечение процесса: 70±24±17 nb (здесь указаны статистическая и систематическая погрешности). Оно оказалось чуть выше предсказаний Стандартной модели для этого диапазона энергий и быстрот (40–60 nb), но вполне согласуется с ним в пределах погрешностей.

Нельзя сказать, что от этого процесса ожидали каких-то сюрпризов. Интерес тут, скорее, «статусный» — зарегистрировать в чистом виде, без «помощи» промежуточных мезонов-резонансов, классический, но трудноуловимый эффект, который постоянно упоминается во вводных курсах квантовой физики.

Источник: ATLAS Collaboration. Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC // препринт arXiv:1702.01625 [hep-ex].

Игорь Иванов


10 август 2019 /
  • Не нравится
  • 0
  • Нравится

Похожие новости

Хиггсовский бозон выглядит стандартным в данных 2016 года

На прошедшей в марте серии конференций Moriond 2017 были впервые представлены результаты Большого адронного коллайдера, полученные на всей статистике 2016 года. Никаких серьезных отклонений от

LHCb открыла пять новых частиц из семейства ?c-барионов

Коллаборация LHCb, работающая на Большом адронном коллайдере, объявила об обнаружении сразу пяти новых тяжелых барионов из семейства ?c с разными массами в диапазоне 3000–3120 МэВ. При еще больших

Необычный эксперимент на LHC поможет разобраться с загадкой космических антипротонов

Инструмент, установленный для сугубо технических проверок в детекторе LHCb Большого адронного коллайдера, нашел неожиданное применение. Благодаря нему физики научились сталкивать протоны с ядрами

Процесс рождения ttH окончательно открыт, но уже не вызывает энтузиазма теоретиков

После нескольких лет поисков коллаборации ATLAS и CMS наконец сообщили о надежном открытии процесса рождения хиггсовского бозона в сопровождении топ-кварк-антикварковой пары. Интенсивность рождения в

ICHEP 2018: спиновые корреляции при рождении топ-кварков существенно расходятся с теорией

Большой адронный коллайдер, похоже, наткнулся еще на одну аномалию. Коллаборация ATLAS, изучив процесс рождения топ-кварка и антикварка и измерив корреляцию между их спинами, получила странный

Загадочное отклонение, обнаруженное CMS в статистике Run 1, не подтвердилось в данных 2016 года

Выполняя рутинный поиск эффектов Новой физики в канале рождения мюонных пар и b-струй, коллаборация CMS обнаружила в данных Run 1 неожиданно сильное отклонение от фона при инвариантной массе мюонной
Комментарии

НАПИСАТЬ КОММЕНТАРИЙ

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код:
Популярные новости
Нейрохимическая гипотеза происхождения человекаЗемляне наблюдали частичное лунное затмениеТемная материя пока никого не убила – и это дает нам информацию о ее природеОгромный астероид едва не столкнулся с ЗемлейПлохие соседи портят кровьМогут ли растения слышать шум воды?Впервые получены структуры контактной и сольватноразделённой ионных пар силенил-литиевого соединенияПаразиты птерозавров оказались заядлыми ныряльщиками